Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants.

Identifieur interne : 000191 ( Main/Exploration ); précédent : 000190; suivant : 000192

Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants.

Auteurs : Lauri Nikkanen [Finlande] ; Eevi Rintam Ki [Finlande]

Source :

RBID : pubmed:30988137

Descripteurs français

English descriptors

Abstract

Photosynthesis is a highly regulated process in photoautotrophic cells. The main goal of the regulation is to keep the basic photosynthetic reactions, i.e. capturing light energy, conversion into chemical energy and production of carbohydrates, in balance. The rationale behind the evolution of strong regulation mechanisms is to keep photosynthesis functional under all conditions encountered by sessile plants during their lifetimes. The regulatory mechanisms may, however, also impair photosynthetic efficiency by overriding the photosynthetic reactions in controlled environments like crop fields or bioreactors, where light energy could be used for production of sugars instead of dissipation as heat and down-regulation of carbon fixation. The plant chloroplast has a high number of regulatory proteins called thioredoxins (TRX), which control the function of chloroplasts from biogenesis and assembly of chloroplast machinery to light and carbon fixation reactions as well as photoprotective mechanisms. Here, we review the current knowledge of regulation of photosynthesis by chloroplast TRXs and assess the prospect of improving plant photosynthetic efficiency by modification of chloroplast thioredoxin systems.

DOI: 10.1042/BCJ20180707
PubMed: 30988137
PubMed Central: PMC6463390


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants.</title>
<author>
<name sortKey="Nikkanen, Lauri" sort="Nikkanen, Lauri" uniqKey="Nikkanen L" first="Lauri" last="Nikkanen">Lauri Nikkanen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku</wicri:regionArea>
<orgName type="university">Université de Turku</orgName>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rintam Ki, Eevi" sort="Rintam Ki, Eevi" uniqKey="Rintam Ki E" first="Eevi" last="Rintam Ki">Eevi Rintam Ki</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland evirin@utu.fi.</nlm:affiliation>
<country wicri:rule="url">Finlande</country>
<wicri:regionArea>Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku</wicri:regionArea>
<orgName type="university">Université de Turku</orgName>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30988137</idno>
<idno type="pmid">30988137</idno>
<idno type="doi">10.1042/BCJ20180707</idno>
<idno type="pmc">PMC6463390</idno>
<idno type="wicri:Area/Main/Corpus">000155</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000155</idno>
<idno type="wicri:Area/Main/Curation">000155</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000155</idno>
<idno type="wicri:Area/Main/Exploration">000155</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants.</title>
<author>
<name sortKey="Nikkanen, Lauri" sort="Nikkanen, Lauri" uniqKey="Nikkanen L" first="Lauri" last="Nikkanen">Lauri Nikkanen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku</wicri:regionArea>
<orgName type="university">Université de Turku</orgName>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rintam Ki, Eevi" sort="Rintam Ki, Eevi" uniqKey="Rintam Ki E" first="Eevi" last="Rintam Ki">Eevi Rintam Ki</name>
<affiliation wicri:level="4">
<nlm:affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland evirin@utu.fi.</nlm:affiliation>
<country wicri:rule="url">Finlande</country>
<wicri:regionArea>Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku</wicri:regionArea>
<orgName type="university">Université de Turku</orgName>
<placeName>
<settlement type="city">Turku</settlement>
<region type="région" nuts="2">Finlande occidentale</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Biochemical journal</title>
<idno type="eISSN">1470-8728</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chloroplast Thioredoxins (genetics)</term>
<term>Chloroplast Thioredoxins (metabolism)</term>
<term>Chloroplasts (genetics)</term>
<term>Chloroplasts (metabolism)</term>
<term>Light (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Photosynthesis (genetics)</term>
<term>Photosynthesis (physiology)</term>
<term>Plants (genetics)</term>
<term>Plants (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Thioredoxin-Disulfide Reductase (genetics)</term>
<term>Thioredoxin-Disulfide Reductase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chloroplastes (génétique)</term>
<term>Chloroplastes (métabolisme)</term>
<term>Lumière (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Photosynthèse (génétique)</term>
<term>Photosynthèse (physiologie)</term>
<term>Plantes (génétique)</term>
<term>Plantes (métabolisme)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Thioredoxin-disulfide reductase (génétique)</term>
<term>Thioredoxin-disulfide reductase (métabolisme)</term>
<term>Thiorédoxines chloroplastiques (génétique)</term>
<term>Thiorédoxines chloroplastiques (métabolisme)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chloroplast Thioredoxins</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chloroplast Thioredoxins</term>
<term>Thioredoxin-Disulfide Reductase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chloroplasts</term>
<term>Photosynthesis</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chloroplastes</term>
<term>Photosynthèse</term>
<term>Plantes</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines chloroplastiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chloroplasts</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chloroplastes</term>
<term>Plantes</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines chloroplastiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Photosynthèse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Light</term>
<term>Models, Biological</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Lumière</term>
<term>Modèles biologiques</term>
<term>Oxydoréduction</term>
<term>Stress oxydatif</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Photosynthesis is a highly regulated process in photoautotrophic cells. The main goal of the regulation is to keep the basic photosynthetic reactions, i.e. capturing light energy, conversion into chemical energy and production of carbohydrates, in balance. The rationale behind the evolution of strong regulation mechanisms is to keep photosynthesis functional under all conditions encountered by sessile plants during their lifetimes. The regulatory mechanisms may, however, also impair photosynthetic efficiency by overriding the photosynthetic reactions in controlled environments like crop fields or bioreactors, where light energy could be used for production of sugars instead of dissipation as heat and down-regulation of carbon fixation. The plant chloroplast has a high number of regulatory proteins called thioredoxins (TRX), which control the function of chloroplasts from biogenesis and assembly of chloroplast machinery to light and carbon fixation reactions as well as photoprotective mechanisms. Here, we review the current knowledge of regulation of photosynthesis by chloroplast TRXs and assess the prospect of improving plant photosynthetic efficiency by modification of chloroplast thioredoxin systems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30988137</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1470-8728</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>476</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2019</Year>
<Month>04</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The Biochemical journal</Title>
<ISOAbbreviation>Biochem J</ISOAbbreviation>
</Journal>
<ArticleTitle>Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants.</ArticleTitle>
<Pagination>
<MedlinePgn>1159-1172</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1042/BCJ20180707</ELocationID>
<Abstract>
<AbstractText>Photosynthesis is a highly regulated process in photoautotrophic cells. The main goal of the regulation is to keep the basic photosynthetic reactions, i.e. capturing light energy, conversion into chemical energy and production of carbohydrates, in balance. The rationale behind the evolution of strong regulation mechanisms is to keep photosynthesis functional under all conditions encountered by sessile plants during their lifetimes. The regulatory mechanisms may, however, also impair photosynthetic efficiency by overriding the photosynthetic reactions in controlled environments like crop fields or bioreactors, where light energy could be used for production of sugars instead of dissipation as heat and down-regulation of carbon fixation. The plant chloroplast has a high number of regulatory proteins called thioredoxins (TRX), which control the function of chloroplasts from biogenesis and assembly of chloroplast machinery to light and carbon fixation reactions as well as photoprotective mechanisms. Here, we review the current knowledge of regulation of photosynthesis by chloroplast TRXs and assess the prospect of improving plant photosynthetic efficiency by modification of chloroplast thioredoxin systems.</AbstractText>
<CopyrightInformation>© 2019 The Author(s).</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nikkanen</LastName>
<ForeName>Lauri</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rintamäki</LastName>
<ForeName>Eevi</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland evirin@utu.fi.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biochem J</MedlineTA>
<NlmUniqueID>2984726R</NlmUniqueID>
<ISSNLinking>0264-6021</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054479">Chloroplast Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D054479" MajorTopicYN="N">Chloroplast Thioredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Calvin cycle</Keyword>
<Keyword MajorTopicYN="Y">NTRC</Keyword>
<Keyword MajorTopicYN="Y">fluctuating light</Keyword>
<Keyword MajorTopicYN="Y">metabolic regulation</Keyword>
<Keyword MajorTopicYN="Y">redox homeostasis</Keyword>
<Keyword MajorTopicYN="Y">thylakoid electron flow</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>03</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>03</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30988137</ArticleId>
<ArticleId IdType="pii">BCJ20180707</ArticleId>
<ArticleId IdType="doi">10.1042/BCJ20180707</ArticleId>
<ArticleId IdType="pmc">PMC6463390</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1988 Aug 25;263(24):11780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3403553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 5;448(7149):92-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17611542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Jan 9;10(1):20-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27575692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2018 Oct 12;7:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30311601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2016 Mar 15;192:28-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26812087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jan;36(1):16-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22646759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2018 Feb;37(2):279-291</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29080907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Nov 20;19(15):1846-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23145525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Sep;64(12):3843-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23881397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Nov 20;284(47):32770-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19783661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jun;36(6):1071-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23190083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Jun;15(3):261-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22226570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Oct;7(10):1586-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24890758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 May;24(5):1894-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22570442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):370-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Oct;1767(10):1233-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17765199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2014 Mar 03;369(1640):20130224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Feb 09;6:34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25709611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8296-E8304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30104347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2009 Apr 13;72(3):452-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Feb;176(2):990-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29192028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Sep 20;21(9):1327-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24483204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Jul;21(7):2036-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19638474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Aug 7;290(32):19540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26254269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 May;22(5):1498-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20511297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 May;162(1):63-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23569108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2016 Apr 29;67:55-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26735062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9908-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 14;10(9):e0136997</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26367870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Dec 23;42(50):14877-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14674763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11644-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11005828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2356-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jul 08;6:521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26217370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2013 Sep 3;21(9):1690-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23932589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2016 Apr 29;67:1-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27128465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):4088-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15531707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Feb 1;9(2):271-288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26687812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2017 Sep 26;372(1730):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28808108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2009 Apr 13;72(3):416-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19185068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Oct 15;17(8):1124-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22531002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Jul;67(14):4057-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27059273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Dec 19;3:286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23267363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Mar;152(3):1219-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20089766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Feb 7;49(3):511-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23290914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2012 Jul;5(4):799-816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22199239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26424450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2019 May;166(1):211-225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30578537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Jul 6;43(26):8281-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15222740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Nov 14;45(45):13465-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17087500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Aug;39(8):1691-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26831830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Nov 21;4:463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24319449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2008 Sep;7(9):1609-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18453340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Aug;199(3):832-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23627567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 15;279(42):43821-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15292215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Oct 08;4:389</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24115951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11224-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2014 Nov 28;588(23):4342-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25448674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2018 Nov 5;11(11):1377-1388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30292682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Feb;179(2):588-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30464024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 May 6;583(9):1399-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19345687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Apr 20;38(16):5200-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10213627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2006 Jan;5(1):114-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16207701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2019 Feb 5;70(3):1005-1016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30476130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:187-220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Jul;10(7):1235-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18377232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Nov 18;354(6314):857-861</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27856901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):E2733-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23818601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Dec;163(4):1710-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24151299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jul 4;272(27):16924-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9202002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxidants (Basel). 2018 Oct 31;7(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30384474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 May;66(10):2957-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25560178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Mar 10;254(5):1627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">216700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Mar;67(6):1951-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26842981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Jan 9;10(1):168-182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27940305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):298-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Apr;23(4):1480-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21505067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Aug 6;582(18):2773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18625226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 02;6:20147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26832990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2018 Sep;592(18):3111-3115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30076598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2018 Jan;30(1):196-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29233855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Jul;7(7):1252-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24658415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Mar 21;2:16035</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27249566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2010 Mar;10(5):987-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20049866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Oct 29;5:15593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26513004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Mar;22(3):249-262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28139457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Jan;1857(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26235611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 27;4:161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23750163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Feb;237(2):619-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23223880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2018 Oct 1;59(10):2155-2164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30011001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Jun 14;7:11847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27297041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Jan;13(1):97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9680968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):12069-12074</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29078290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1261-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Jan 25;132(2):273-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18243102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5738-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11929977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jan;161(1):508-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23151348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1417-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 06;7:1817</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27999583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2004;79(3):265-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Sep;61(14):4043-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20616155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Nov;169(3):1766-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26338951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):E3967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27335455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 May;2(3):457-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Apr;39(4):804-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26476233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Feb;38(2):299-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24428628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Feb 16;17(4):868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9463365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Dec;84(5):900-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26468055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 27;278(26):23747-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12707279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Aug 9;110(3):361-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12176323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Oct;13(8):1205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20136512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Sep;87(6):654-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27233821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Mar;29(3):315-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 May 03;8:719</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28515738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Mar;36(3):670-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22943306</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Finlande</li>
</country>
<region>
<li>Finlande occidentale</li>
</region>
<settlement>
<li>Turku</li>
</settlement>
<orgName>
<li>Université de Turku</li>
</orgName>
</list>
<tree>
<country name="Finlande">
<region name="Finlande occidentale">
<name sortKey="Nikkanen, Lauri" sort="Nikkanen, Lauri" uniqKey="Nikkanen L" first="Lauri" last="Nikkanen">Lauri Nikkanen</name>
</region>
<name sortKey="Rintam Ki, Eevi" sort="Rintam Ki, Eevi" uniqKey="Rintam Ki E" first="Eevi" last="Rintam Ki">Eevi Rintam Ki</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000191 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000191 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30988137
   |texte=   Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30988137" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020